June 2012

Risk Management

Ideas, Products, Risks, Limits

Jawwad Intro

Fellow Society of Actuaries, Investments

MBA, Columbia Business School

19 years consulting: US, UK, ME & Pakistan

Risk Management, Product Development, Regulatory Reporting, Actuarial Practice

Prefers - Jawwad

http://FinanceTrainingCourse.com

http://www.alchemya.com

jawwad@alchemya.com

Alchemy Intro

Actuarial & Risk Advisory firm

8 years, 4 Markets

Derivative & Risk Management models, ALM, ICAAP, Stress Testing, Financial Product Development, Training workshops

120th workshop - 1600 trained professionals

What is this course about

Price

Risk

Value

Products

Limits

Price

Volatility

Models

Relative Value

Relative Value - II

Products & Payoffs

Limits

Action Plan – Day One

Volatility

Trailing volatility

Data & Trends

Review of trends

Value at Risk

 Understanding & Calculating Value at Risk.

Calculating VaR

Hands on practice

Action Plan – Day Two

Working with Oil & Gold

Fundamental models

Air Canada

• Oil

GM

FX

Measuring Exposure

What would you recommend?

Distribution & Volatility

Sigma

Volatility

Variance ==> expectations not met

- >Std-deviation ==> square root (Variance)
- >Dispersion, Diffusion
- >Volatility
- >Vol
- >Trading Vol
- >Implied Vol

Optionality - Volatility - Convexity

Exchange Rate Volatility against the US Dollar of Selected Crisis and Non-Crisis Currencies, 1990:01-2004:05 (Daily) - Source Ronald Mckinnon, Stanford University

Exchange Rate Volatility against the US Dollar of Selected Crisis and Non-Crisis Currencies, 1990:01-2004:05 (Daily) - Source Ronald Mckinnon, Stanford University

Analysts. Actuaries.

(Continued), Exchange Rate Volatility against the US Dollar, 1990:01-2004:05 (Daily)

Standard Deviations of Monthly Exchange Rate Fluctuations against the Dollar

	Pre-crisis	Crisis	Post-crisis
Chinese Yuan	0.25	0.03	0.00
Hong Kong Dollar	0.08	0.07	0.11
Indonesian	0.26	26.54	5.16
Rupiah Korean Won	1.01	11.53	1.92
Malaysian Ringgit	1.06	6.69	0.00
Philippine Peso	1.19	5.25	1.67
Singapore Dollar	0.76	2.88	1.18
New Taiwan	1.01	2.63	1.35
Dollar Thai Baht	0.43	8.88	1.60
Japanese Yen	3.66	3.64	2.39
Euro (Deutsche	2.20	2.33	2.58
Mark) Swiss Franc	2.62	2.60	2.54

Data source: IMF: IFS, Ronald Mckinnon, Stanford University

Vol Trend

Lagged effects

Flight to Safety cycle

Flight to Safety - II

Thought Experiments?

How many troy ounces of Gold can 1000 units of currency buy (oilinsights.net)

Volatility Drag?

$$\Lambda o = \dot{s}' = \dot{s}$$

Vol = 0, r = 0

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}z_t}$$

$$Vol = 0, r = 1$$

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}z_t}$$

$$Vol = 0, r = ?$$

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}z_t}$$

Vol = ?, r = 1

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}z_t}$$

Vol = ?, r = 0

$$S_t = S_0 e^{(r - \frac{1}{2}\sigma^2)t + \sigma\sqrt{t}z_t}$$

Trailing Volatilites

Thought experiment - PSR Process

Framing the problem – What is long term?

Framing the problem – What is long term?

Framing the problem – What is long term?

Distributions - Simulations

Mindset - Distributions - Models

ALL MODELS ARE WRONG SOME MODELS ARE MORE USEFUL THAN OTHERS

Sigma a,b

Questions

What is the probability that margins will decrease in any month over the next quarter, the next half year, or the next full year?

What is the range of these projected reductions?

What is the worst case reduction in any month over the next 12 months?

What is the likely reduction in any month over the next 12 months?

Value @ Risk

Monthly Crude Oil Change – The Oil Refinery Case

VaR and Margins

Application Questions

Questions

What is the probability that margins will decrease in any month over the next quarter, the next half year, or the next full year?

What is the range of these projected reductions?

Questions

What is the worst case reduction in any month over the next 12 months?

What is the likely reduction in any month over the next 12 months?

More questions?

What is the probability that gross margins will shrink below the minimum profitability threshold?

What is the probability that gross margins will turn negative?

More questions?

What is the likely expected gross margin number at current price volatility levels?

How will this number change if volatility moves by a percentage point?

By how much does a dollar change in prices change the expected margin number?

Monthly Crude Oil Change

Integration - Example

		Input	Input	Inventory	Inventory	
		Price	Price	Losses	Losses	
Odds	Percentile	Shock-low	Shock-high	Low	High	
	99%	145	364	12,310,771	30,885,105	
1%	99%	145	364	12,310,771	30,885,105	
11%	90%	80	200	6,781,826	17,014,160	
18%	85%	65	162	5,484,689	13,759,917	
25%	80%	52	132	4,453,765	11,173,548	
33%	75%	42	105	3,569,324	8,954,674	
43%	70%	33	82	2,775,068	6,962,056	
52%	66%	26	64	2,182,708	5,475,951	
67%	60%	16	40	1,340,684	3,363,492	
82%	55%	8	20	664,986	1,668,308	
96%	51%	2	4	132,662	332,820	

Crude Volatility

VaR

AUD/USD Exchange Rate

VaR Case

Portfolio A

Portfolio B

Portfolio D

Portfolio J

Portfolio N

Portfolio P

Histogram Source

	Α			В			D	
Bin	Freq	Cumulative %	Bin	Freq	Cumulative %	Bin	Freq	Cumulative %
-20%	1	0.30%	-25%	1	0.30%	-5.0%	1	0.30%
-18%	0	0.30%	-23%	0	0.30%	-4.3%	1	0.60%
-17%	0	0.30%	-22%	0	0.30%	-3.7%	0	0.60%
-15%	0	0.30%	-20%	0	0.30%	-3.0%	5	2.08%
-14%	0	0.30%	-18%	0	0.30%	-2.3%	7	4.17%
-12%	0	0.30%	-16%	0	0.30%	-1.6%	15	8.63%
-11%	0	0.30%	-14%	0	0.30%	-1.0%	29	17.26%
-9%	0	0.30%	-13%	0	0.30%	-0.3%	50	32.14%
-8%	0	0.30%	-11%	0	0.30%	0.4%	152	77.38%
-6%	0	0.30%	-9%	0	0.30%	1.1%	34	87.50%
-5%	16	5.06%	-7%	0	0.30%	1.8%	25	94.94%
-3%	10	8.04%	-5%	0	0.30%	2.4%	3	95.83%
-2%	26	15.77%	-4%	10	3.27%	3.1%	4	97.02%
0%	62	34.23%	-2%	20	9.23%	3.8%	3	97.92%
1%	164	83.04%	0%	179	62.50%	4.5%	4	99.11%
3%	27	91.07%	2%	88	88.69%	5.1%	0	99.11%
4%	16	95.83%	4%	24	95.83%	5.8%	0	99.11%
6%	5	97.32%	5%	10	98.81%	6.5%	0	99.11%
More	9	100.00%	More	4	100.00%	More	3	100.00%

Histogram Source

	J			N			Р	
Bin	Freq	Cumulative %	Bin	Freq	Cumulative %	Bin	Freq	Cumulative %
-1.44%	1	0.30%	-0.80%	1	0.30%	-3.4%	1	0.30%
-1.25%	2	0.89%	-0.70%	1	0.60%	-2.9%	0	0.30%
-1.06%	5	2.38%	-0.60%	0	0.60%	-2.5%	0	0.30%
-0.87%	12	5.95%	-0.50%	1	0.89%	-2.0%	1	0.60%
-0.68%	13	9.82%	-0.40%	0	0.89%	-1.5%	1	0.89%
-0.48%	16	14.58%	-0.30%	3	1.79%	-1.0%	9	3.57%
-0.29%	25	22.02%	-0.20%	3	2.68%	-0.6%	13	7.44 %
-0.10%	31	31.25%	-0.10%	14	6.85%	-0.1%	59	25.00%
0.09%	111	64.29%	0.00%	148	50.89%	0.4%	177	77.68%
0.28%	39	75.89 %	0.10%	138	91.96%	0.8%	49	92.26%
0.47%	23	82.74%	0.20%	19	97.62%	1.3%	20	98.21%
0.67%	21	88.99%	0.30%	1	97.92%	1.8%	3	99.11%
0.86%	14	93.15%	0.40%	3	98.81%	2.3%	0	99.11%
1.05%	8	95.54%	0.50%	1	99.11%	2.7%	1	99.40%
1.24%	4	96.73%	0.60%	1	99.40%	3.2%	1	99.70%
1.43%	5	98.21%	0.70%	1	99.70%	3.7%	0	99.70%
1.63%	3	99.11%	0.80%	0	99.70%	4.1%	0	99.70%
1.82%	1	99.40%	0.90%	0	99.70%	4.6%	0	99.70%
More	2	100.00%	More	1	100.00%	More	1	100.00%

What is exposure?

What is exposure?

Air Canada

Rising Jet Fuel Prices

GM

Rising Canadian Dollar

Banc One

Interest Rates

LTCM

Volatility

Issues

FinanceTrainingCourse.com

Limit Management

FinanceTrainingCourse.com

Stop Loss Limit Process

Risk appetite

 Loss Capital Amount – depends on Expected and Minimum Rates of Return, Capital Amount

Target Stop loss limit

applicable for given period

Book Size

 Allocation of book size to individual business/ investment lines

Actual stop loss limits

individual lines for given period

What is a Target Account?

Measurable/ Reportable

Sensitive/ Relevant Explainable/
Understandable

Target Accounts

Air Canada

P&L Shortfall

GM

FX Factor Sensitivity

Banc One

 Interest Rate Impact on Earnings

LTCM

Volatility, Value at Risk

Exposure, Risk, Target Accounts

Risk Target Accounts Probability Gross • Sit that we somewhere Numbers may lose in the Book Size something middle at Driven by the Driven by Internal intersection external choices of exposure factors and risk

Duration / Convexity

Convexity

Alternate Convexity

Convexity – long bond

Measuring Exposure

Oil Refinery Case Study

Case Study One

Crude Oil Refinery

Lag between crude oil purchase and product arrival for distribution

Retail price sensitive to pricing set by market price regulator

Market regulator link pricing to international crude prices

There is a 30 day lag in every price reset

Crude Oil Oil Refiner

Price Fix

Manufacturing Process Time lag

Potential Exposure

P&L Impact

Assumption

HSFO	NAPHTHA	MOGAS	HOBC	KERO	Aviat Fuels	HSD	LDO
6.6	8.22	8.53	8.51	7.73	8.08	7.52	7.24
32.50%	0.00%	19.03%	0.29%	2.67%	10.50%	33.84%	0.39%

Crude Oil - input

Refined products

Margin Impact

Crude Oil Refiner

Exposure Assessment

- >Understand Manufacturing Process
- >Estimate time lag between input price fix and retail product delivery
- >Breakdown between fixed and variable pricing
- >Estimate dollar sensitivity to unit change in input price
- >Estimate projected impact on P&L

Questions & Answers

Analysts. Actuaries.

		Input	Input	Margin	Margin
		Price	Price	shortfall	shortfall
Odds	Percentile	Shock-low	Shock-high	Low	High
	99%	145	364	25%	63.4%
1%	99%	145.0	363.8	25.0%	63.4%
11%	90%	79.9	200.4	13.6%	34.7%
18%	85%	64.6	162.1	11.0%	28.0%
25%	80%	52.5	131.6	8.8%	22.7%
33%	75%	42.0	105.5	7.0%	18.1%
43%	70%	32.7	82.0	5.4%	14.0%
52%	66%	25.7	64.5	4.2%	10.9%
67%	60%	15.8	39.6	2.4%	6.6%
82%	55%	7.8	19.7	1.0%	3.1%
96%	51%	1.6	3.9	-0.1%	0.3%
a lchem	ý	Financ	ceTrainingCourse.c	com	

Questions & Answers

		Input	Input	Inventory	Inventory
		Price	Price	Losses	Losses
Odds	Percentile	Shock-low	Shock-high	Low	High
	99%	145	364	12,310,771	30,885,105
1%	99%	145	364	12,310,771	30,885,105
11%	90%	80	200	6,781,826	17,014,160
18%	85%	65	162	5,484,689	13,759,917
25%	80%	52	132	4,453,765	11,173,548
33%	75%	42	105	3,569,324	8,954,674
43%	70%	33	82	2,775,068	6,962,056
52%	66%	26	64	2,182,708	5,475,951
67%	60%	16	40	1,340,684	3,363,492
82%	55%	8	20	664,986	1,668,308
96%	51%	2	4	132,662	332,820
Analysts, Actuarie	<u>y</u>	Fina	ceTrainingCourse	.com	

Questions

What is the probability that margins will decrease in any month over the next quarter, the next half year, or the next full year?

What is the range of these projected reductions?

What is the worst case reduction in any month over the next 12 months?

What is the likely reduction in any month over the next 12 months?

More questions?

What is the probability that gross margins will shrink below the minimum profitability threshold?

What is the probability that gross margins will turn negative?

More questions?

What is the likely expected gross margin number at current price volatility levels?

How will this number change if volatility moves by a percentage point?

By how much does a dollar change in crude prices change the expected margin number?

Questions for Air Canada & GM

What is the probability that margins will decrease in any month over the next quarter, the next half year, or the next full year?

What is the range of these projected reductions?

What is the worst case reduction in any month over the next 12 months?

What is the likely reduction in any month over the next 12 months?

As a board member what % of hedging do you recommend and why?

Crude Oil

Price Volatility

Integrated

Future spreads

Brent Relative Price in USD, EUR, AUD, JPY

Brent, WTI Correlation

Correlation with EUR-USD

ALM

Banc One Case

ALM at a glance

A tale of two banks

Bank A

A → 100 M

L → 90 M

E → 10 M

Bank B

• A → 100 M

• L → 90 M

• E → 10 M

Assets? Maturity?

Liquidity? Funding?

Risk → Return → Sensitivity

Risk - Return

Metric or Target Account

Change in Interest Income

Change in Market Value

Driver

Change in Interest Rate

Setting

Balance Sheet

Income Statement

ALM - Framework - II

Concepts

Sigma

Duration

Convexity

Asset Sensitive

Liability Sensitive

Value at Risk

Hedging Tools

Concepts

Liquidity – Funding

Liquidity – Market (Tbills)

Liquidity – Assumptions

Earnings at Risk

Limit Management

Banc one Questions?

How does Banc One measure its interest rate exposure? Given Banc One's exposure should they worry about rising rates or declining rates environment?

Can you optimize Earning at risk and NPV at risk at the same time? How would you go about it? Take Banc One's example and show through numbers.

How do derivatives and other non-funded instrument help with capital optimization. Show through numbers.

Review the annexure on pages 26-29. If you look at these numbers as an analyst, what are your conclusions? Your recommendations to Banc One?

